Reliability-Driven, Spatially-Adaptive Regularization for Deformable Registration

نویسندگان

  • Lisa Tang
  • Ghassan Hamarneh
  • Rafeef Abugharbieh
چکیده

We propose a reliability measure that identifies informative image cues useful for registration, and present a novel, data-driven approach to spatially adapt regularization to the local image content via use of the proposed measure. We illustrate the generality of this adaptive regularization approach within a powerful discrete optimization framework and present various ways to construct a spatially varying regularization weight based on the proposed measure. We evaluate our approach within the registration process using synthetic experiments and demonstrate its utility in real applications. As our results demonstrate, our approach yielded higher registration accuracy than non-adaptive approaches and the proposed reliability measure performed robustly even in the presences of noise and intensity inhomogenity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RANCOR: Non-Linear Image Registration with Total Variation Regularization

Optimization techniques have been widely used in deformable registration, allowing for the incorporation of similarity metrics with regularization mechanisms. These regularization mechanisms are designed to mitigate the effects of trivial solutions to ill-posed registration problems and to otherwise ensure the resulting deformation fields are well-behaved. This paper introduces a novel deformab...

متن کامل

Sparse Bayesian registration of medical images for self-tuning of parameters and spatially adaptive parametrization of displacements

We extend Bayesian models of non-rigid image registration to allow not only for the automatic determination of registration parameters (such as the trade-off between image similarity and regularization functionals), but also for a data-driven, multiscale, spatially adaptive parametrization of deformations. Adaptive parametrizations have been used with success to promote both the regularity and ...

متن کامل

Spatially and Scale Adaptive Total Variation Based Regularization and Anisotropic Diiusion in Image Processing

In image processing, it is often desirable to remove noise, smooth or sharpen image features, or to otherwise enhance the image. Total Variation (TV) based regularization is a model case of geometry-driven diiusion for image processing. In our papers 14] and 15], we analyze the precise eeects of TV based regularization by analytically nding exact solutions to the TV regularization problem. In t...

متن کامل

Sliding Geometries in Deformable Image Registration

Regularization is used in deformable image registration to encourage plausible displacement fields, and significantly impacts the derived correspondences. Sliding motion, such as that between the lungs and chest wall and between the abdominal organs, complicates registration because many regularizations are global smoothness constraints that produce errors at object boundaries. We present local...

متن کامل

Regularization in deformable registration of biomedical images based on divergence and curl operators.

BACKGROUND Similarity measures in medical images do not uniquely determine the correspondence between two voxels in deformable image registration. Uncertainties in the final computed deformation exist, questioning the actual physiological consistency of the deformation between the two images. OBJECTIVES We developed a deformable image registration method that regularizes the deformation field...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010